Rectangular grid two-dimensional sheets of copper(ı) bridged by both co-ordinated and hydrogen bonded 4,4'-bipyridine (4,4'-bipy) in $\left[\mathrm{Cu}\left(\mu-4,4^{\prime}-\right.\right.$ bipy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{FBF}_{3}\right)_{2}\right] \cdot 4,4^{\prime}$-bipy

A lexander J. B lake, Stuart J. H ill, Peter H ubberstey* and Wan-Sheung Li
Chemistry Department, N ottingham U niversity, N ottingham NG7 2RD, UK

The complex $\left[\mathrm{Cu}\left(\mu-4,4^{\prime}\right.\right.$-bipy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{FBF}_{3}\right)_{2}\right] \cdot 4,4^{\prime}$ '-bipy $\left(4,4^{\prime}\right.$ bipy $=4,4^{\prime}$-bipyridine), in which copper atoms are linked by $\mathrm{Cu}-4,4^{\prime}$-bipy-Cu and $\mathrm{Cu}-\mathrm{OH}_{2} \cdots 4,4^{\prime}$-bipy $\cdots \mathrm{H}_{2} \mathrm{O}-\mathrm{Cu}$ assemblies, involving co-ordinated and hydrogen bonded 4,4'bipy, respectively, to form two-dimensional rectangular grid sheets, has been isolated and structurally characterised.

M olecular framework structures formed by later transition metals (copper and zinc triads) bridged by N, N '-bidentate molecular rods vary with metal, anion and bridge. ${ }^{1,2}$ Those based on 4,4'-bipyridine ($4,4^{\prime}$-bipy) bridges range from stacked square grid cationic sheets $\left\{\left[\mathrm{Cd} d^{\prime \prime}\left(\mu-4,4^{\prime}-\text { bipy }\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}\right.$. $2\left(4,4^{\prime}\right.$-bipy) $\left.\cdot 4 \mathrm{H}_{2} \mathrm{O}^{1}\right\}$ through interpenetrating square grid cationic sheets $\left\{\left[\mathrm{C} d^{\prime \prime}\left(\mu-4,4^{\prime}-\text { bipy }\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\right]\left[\mathrm{PF}_{6}\right]^{1}\right.$ and $\mathrm{M}^{\prime \prime}(\mu-$ $4,4^{\prime}$-bipy $\left.\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{SiF}_{6}\right](\mathrm{M}=\mathrm{Cu}, \mathrm{Zn} \text { or } \mathrm{Cd})^{3}\right\}$ to interwoven cationic frameworks with T -shaped $\left\{\left[\mathrm{A} \mathrm{g}{ }^{\prime}\left(4,4^{\prime}\right.\right.\right.$-bipy $\left.\left.)\right]\left[\mathrm{NO}_{3}\right]^{4}\right\}$ or diamondoid architectures $\left\{\left[\mathrm{Cu}\left(4,4^{\prime}-\text { bipy }\right)_{2}\right]\left[\mathrm{PF}_{6}\right]^{5}\right.$ and $\left[\mathrm{Ag}^{\prime}\right.$ -(4,4'-bipy) $\left.{ }_{2}\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{6}\right\}$. N eutral sheets, based on mutually perpendicular linear $\left[\left\{\mathrm{Cu}\left(4,4^{\prime} \text {-bipy }\right)\right\}_{n}\right]$ and $\left[\left\{\mathrm{CuX}_{2}\right\}_{n}\right]$ chains as in $\left[\mathrm{Cu}\left(4,4^{\prime}-\text { bipy }\right)_{2} \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{Cl}$ or Br$)$ are also known. ${ }^{7}$ We now report a novel arrangement, found in [Cu' $\left(\mu-4,4^{\prime}-\right.$ bipy $)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2^{-}}$ $\left.\left(\mathrm{FBF}_{3}\right)_{2}\right] \cdot 4,4^{\prime}$-bipy 1, based on stacked infinite rectangular grid sheets.

Addition of an aqueous solution ($25 \mathrm{~cm}^{3}$) of hydrated copper(II) tetrafluoroborate ($0.309 \mathrm{~g}, 1.0 \mathrm{mmol}$) to a refluxing acetonitrile solution ($25 \mathrm{~cm}^{3}$) of $4,4^{\prime}$-bipy ($0.312 \mathrm{~g}, 2.0 \mathrm{mmol}$) gave an immediate blue precipitate. A fter filtration, blue crystals, suitable for X-ray diffraction study, were grown by vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the mother-liquor. Elemental analysis, magnetochemistry and IR spectroscopy showed both products to have the formulation of $1 . \dagger$

The structure of complex $\mathbf{1}$ was determined by single-crystal X-ray diffraction. \ddagger Its unique feature is the differing role of the two 4,4'-bipy molecules. One bridges copper atoms directly $[C u \cdots C u=11.078(2) \AA$], while the other, through hydrogenbonding interactions, bridges copper atoms via intermediate water molecules $[\mathrm{Cu} \cdots \mathrm{Cu}=14.951(2) \AA$]. A two-dimensional sheet structure, based on a rectangular arrangement of copper atoms, results (Fig. 1). The copper atom and the co-ordinated 4,4 '-bipy molecule lie on a crystallographic two-fold axis. The copper atom has Jahn-Teller tetragonally elongated distorted octahedral geometry, provided equatorially by the 4,4'-bipy nitrogens $[\mathrm{Cu}-\mathrm{N}(1) 1.983(9), \mathrm{Cu}-\mathrm{N}(2) 1.99(1) \AA]$ and two symmetry related water oxygens [Cu - 0 (1) $1.966(5) \AA$] and axially by two symmetry related tetrafluoroborate fluorines

[^0]$[\mathrm{Cu}-\mathrm{F}(2) 2.383(5) \AA$]. The water molecule forms a strong hydrogen bond $[\mathrm{O}(1)-\mathrm{H}(99) \cdots \mathrm{N}(11)]$ to the non-co-ordinated $4,4^{\prime}$-bipy molecule $[\mathrm{O} \cdots \mathrm{N} 2.688(9)$, $\mathrm{O}-\mathrm{H} \quad 0.95, \mathrm{H} \cdots \mathrm{N} 1.74$ $\left.\AA, 0 \cdots \mathrm{H} \cdots \mathrm{N} 172^{\circ}\right]$. The generation of a sheet structure containing both co-ordinated and hydrogen-bonded bridging N -donor ligands (Fig. 1) is novel although the use of 4,4'-bipy as a hydrogen-bonded spacer has been reported in the diamondoid structure of $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4} \cdot 2\left(4,4^{\prime}\right.$-bipy). $2 \mathrm{M} \mathrm{eCN} .{ }^{2}$ Thestructure of $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mu-4,4^{\prime} \text {-bipy }\right)_{2}\right]\left[\mathrm{PF}_{6}\right] \cdot 2\left(4,4^{\prime}-\right.$ bipy) $4 \mathrm{H}_{2} \mathrm{O}^{1}$ also contains un-co-ordinated 4,4'-bipy molecules. They are not involved, however, in any bridging interaction. They simply occupy cavities in the three-dimensional

Fig. 1 Two-dimensional architecture ${ }^{11}$ of the structure of [$\mathrm{Cu}\left(\mu-4,4^{\prime}-\right.$ bipy) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{FBF}_{3}\right)_{2}\right] \cdot 4,4^{\prime}$-bipy, showing the $\mathrm{Cu}-4,4^{\prime}$-bipy- Cu (coordinated) and $\mathrm{Cu}-\mathrm{OH}_{2} \cdots 4,4^{\prime}$-bipy $\cdots \mathrm{H}_{2} \mathrm{O}-\mathrm{Cu}$ (hydrogen bonded) 4,4'-bipy bridges
\ddagger Crystal data: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~B}_{2} \mathrm{CuF}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}, \mathrm{M}=589.85$, monoclinic, space group $C 2 / \mathrm{c}$ (no. 15), $\quad a=16.228(2), \quad b=11.078(2), \quad c=13.985(2) ~ \AA$, $\beta=114.43(1)^{\circ}, U=2287.9(6) \AA^{3}, Z=4, F(000)=1196, \quad D_{c}=1.710$, $\mathrm{D}_{\mathrm{m}}=1.74 \mathrm{~g} \mathrm{~cm}{ }^{-3}$, graphite-monochromated $\mathrm{Mo-K} \alpha$ radiation, $\lambda=0.71073 \AA, \mu=1.045 \mathrm{~mm}^{-1}$, blue column $0.24 \times 0.16 \times 0.14 \mathrm{~mm}$. Stoe Stadi-4 four-circle diffractometer with Oxford Cryosystems open flow cryostat8 operated at $150.0(2) \mathrm{K}$, scan type $\omega-\theta, 2 \theta_{\max }=50.0^{\circ}$, 1817 unique data. The structure was solved by direct methods (SIR 92^{9}) and refined by full-matrix least squares (CRY STA LS ${ }^{10}$) on F^{2} using all data. All hydrogen atoms were located by Fourier-difference syntheses. The non-hydrogen atoms were refined with anisotropic displacement parameters. The positions of the 4,4'-bipy hydrogens, but not the water hydrogens, were refined with fixed $U_{\text {iso }}\left(=0.05 \AA^{2}\right)$. R efinement (unit weights) converged to $R=0.1222$, wR $2=0.1975$ for all data and conventional $R=0.0767$ for 1214 data with $I \geqslant 2 \sigma(I)$; residual $\Delta \rho_{\max }=2.01$ e \AA^{-3} [near $\left.\mathrm{Cu}(1)\right], \Delta \rho_{\text {min }}=-1.33$ e $\AA^{-3} ;(\Delta / \sigma)_{\max }=0.253$. A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. Chem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/417.

Fig. 2 Projection of the structure ${ }^{11}$ of $\left[\mathrm{Cu}\left(\mu-4,4^{\prime}\right.\right.$-bipy $)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2^{-}}$ $\left.\left(\mathrm{FBF}_{3}\right)_{2}\right] \cdot 4,4^{\prime}$-bipy onto the $x z$ plane, showing (i) the location of the $\mathrm{BF}_{4}{ }^{-}$anions in the cavities of the rectangular grid sheets, (ii) the stacking of the $4,4^{\prime}$-bipy molecules and (iii) the $O(1) \cdots F(4)$ as well as the $\mathrm{O}(1) \cdots \mathrm{N}(11)$ contacts. Carbon and hydrogen atoms are omitted for clarity; the 4,4'-bipy molecular rods are shown as single bold lines
framework built up of two-dimensional square grid sheets linked through four hydrogen-bonded water molecules. ${ }^{1}$

Since four juxtapositioned equatorial pyridine (py) molecules and two axially located $\mathrm{BF}_{4}{ }^{-}$anions are found in $\left[\mathrm{Cu}(\mathrm{py})_{4}{ }^{-}\right.$ $\left.\left(\mathrm{FBF}_{3}\right)_{2}\right]\left[\mathrm{Cu}-\mathrm{N} 2.012-2.044, \mathrm{Cu}-\mathrm{F} 2.400\right.$ and $2.464 \AA$], ${ }^{12}$ the inclusion of the intermediate water molecules in the bridge cannot be due to steric requirements of the co-ordination site. It is attributed to the need to generate a cavity in the sheet structure sufficiently large ($11.08 \times 14.95 \AA$) to accommodate two anions from adjacent sheets (Fig. 2). The sheets are displaced such that the copper atoms are located close to the centres of the cavities of adjacent sheets thus enabling the $\mathrm{BF}_{4}{ }^{-}$anions to fit into these cavities. This arrangement is facilitated by the alternate parallel $\pi-\pi$ stacking of the $4,4^{\prime}$-bipy molecules along the c axis (separation $3.50 \AA$; dihedral angle 4.94°). The two heterocyclic rings of the hydrogen-bonded 4,4'-bipy molecule are constrained to be parallel by symmetry; those of the coordinated 4,4'-bipy are slightly twisted with a dihedral angle of 9.29° (Fig. 2).

A though location of the weakly co-ordinating $\mathrm{BF}_{4}{ }^{-}$anion in the weakly binding axial co-ordination site is typical, the Cu"...F contact is considerably shorter than any previously observed. ${ }^{13,14}$ The tetrafluoroborate anion, which exhibits no disorder, is held in position by an intermolecular hydrogen bond $[0(1)-H(98) \cdots F(4)]$ to a water molecule in an adjacent sheet $[\mathrm{O} \cdots \mathrm{F} 2.865(8), \mathrm{O}-\mathrm{H} 1.01, \mathrm{H} \cdots \mathrm{F} 1.93 \AA$; $\mathrm{O}-\mathrm{H} \cdots \mathrm{F}$ $\left.153^{\circ}\right]$. This is the only contact between parallel sheets (Fig. 2).

A lthough the longest B-F contact is that to the co-ordinated fluorine $[F(2)]$, the standard deviations are such that geometrical differences [B-F 1.36(1)-1.39(1) Å ; F-B-F 108.3(8)$110.9(7)^{\circ}$] are not significant and cannot be used to support an asymmetric structure for the $\mathrm{BF}_{4}{ }^{-}$ligand. Similarly, the IR
spectrum ($400-4000 \mathrm{~cm}^{-1}$) of complex 1 measured in a Nujol mull between K Br windows, protected by polythene, is not consistent with the loss of tetrahedral symmetry; splitting of the triply degenerate $v(B-F)$ mode $\left(T_{2}\right)$ of the free $\mathrm{BF}_{4}{ }^{-}$anion at $1080 \mathrm{~cm}^{-1,15}$ resulting from reduced symmetry ($\mathrm{C}_{3 v}, \mathrm{C}_{2 v}$ or C_{5}) ${ }^{14}$ is not observed. The weakness of the Cu•MF interaction is indicated, however, by differences between the IR spectrum of $\mathbf{1}$ measured in a pressed KBr pellet and in a Nujol mull; weakly bound $\mathrm{BF}_{4}{ }^{-}$is displaced by Br^{-}in pressed K Br pellets, giving spectra different from those in N ujol mulls. ${ }^{13}$

Acknowledgements

We thank the EPSRC for the award of a maintenance grant (to S. J.H.) and for the provision of a four-circlediffractometer.

References

1 R. Robson, B. F. A brahams, S. R. Batten, R. W. Gable, B. F. Hoskins and J. Liu, Supramolecular Architecture, ACS Publications, Washington, DC, 1992, ch. 19.
2 M. J. Zaworotko, C hem. Soc. R ev., 1994, 283.
3 R. W. Gable, B. F. Hoskins and R. Robson, J. Chem. Soc., Chem. Commun., 1990, 1677.
4 F. Robinson and M. J. Zaworotko, J. Chem. Soc., Chem. Commun., 1995, 2413.
5 L. R. M acG ilivray, S. Subramanian and M. J. Zaworotko, J. Chem. Soc., C hem. Commun., 1994, 1325.
6 L. Carlucci, G. Ciani, D. M. Proserpio and A. Sironi, J. Chem. Soc., C hem. Commun., 1994, 2755.
7 N. M asciocchi, P. Cairati, L. Carlucci, G. M ezza, G. Ciani and A . Sironi, J. Chem. Soc., D alton Trans., 1996, 2739.
8 J. Cosier and A. M. G lazer, J. A ppl. C rystallogr., 1986, 19, 105.
9 A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M . C. Burla, G. Polidori and M. Camalli, J. A ppl. C rystallogr., 1994, 27, 435.
10 D. J. Watkin, C. K. Prout, R. J. Carruthers and P. Betheridge, CRYSTALS Issue 10, Chemical Crystallography Laboratory, U niversity of Oxford, 1996.
11 D. J. Watkin, C. K. Prout and L. J. Pearce, CA M ERON, Chemical Crystallography L aboratory, U niversity of Oxford, 1996.
12 P. Hubberstey and D. J. Quinlan, unpublished work.
13 A. S. Batsanov, P. Hubberstey and C. E. Russell, J. Chem. Soc., D alton Trans., 1994, 3189 and refs. therein.
14 W. Beck and K. Sünkel, Chem. Rev., 1988, 88, 1405; I. M . Vezzosi, F. A. Zanoli, L. P. Battaglia and A. B. Corradi, Inorg. Chim. Acta, 1985, 105, 13; H. N akai, Bull. Chem. Soc. J pn., 1983, 56, 1637; J. Foley, D. K ennefick, D. Phelan, S. Tyagi and B. H athaway, J. C hem. Soc., D alton Trans., 1983, 2333; D. S. Brown, J. D. Lee, B. G. A. M elsom, B. J. H athaway, I. M. Proctor and A. A. G. Tomlinson, Chem. Commun., 1967, 369.
15 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination C ompounds, W iley, N ew York, 4th edn., 1986.

Received 2nd J anuary 1997; Communication 7/00036G

[^0]: * E-M ail: Peter.H ubberstey@N ottingham.ac.uk
 \dagger Found (Calc.) for 1: C, 41.50 (41.00); H, 3.35 (3.30); N, 10.05 (9.55\%). IR (N ujol mull, K Br windows)/ cm^{-1} (all bands due to 4,4'-bipy unless stated otherwise): 1610s, 1535w, 1493w, 1411s, 1222s, 1077s (br) ($\mathrm{BF}_{4}{ }^{-}$), $813 \mathrm{~s}, 644 \mathrm{w}, 629 \mathrm{w}, 533 \mathrm{w}, 522 \mathrm{w} . \mu_{\text {eff }}=1.49 \mu_{\mathrm{B}} \approx 1.38 \times 10^{-23} \mathrm{~J} \mathrm{~T}^{-1}$.

